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Abstract

The aim of this paper is to design a stiff and lightweight passive vibration isolator that has wide stop-
band at low frequencies. First of all, bandwidths of single-degree-of-freedom (sdof) dynamic vibration
absorbers and lever-type anti-resonant vibration isolators are formulated in a general framework. Then, by
making use of these formulations, a 2dof vibration isolator is synthesized to obtain large bandwidth at low
frequencies. It has been shown that inertial coupling was beneficial in obtaining a stiff and lightweight
design. More importantly, asymmetry in the inertial forcing terms generated by the levered masses yielded a
vibration isolator that has two anti-resonance frequencies in its stop-band. Finally, bandwidth
improvement over the previously analyzed isolators is demonstrated via numerical examples.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is about undamped band-stop filter-type vibration isolators used in the case of
harmonic base excitation. The term ‘‘band-stop filter’’ is used to emphasize that all the isolator
designs in this paper achieve isolation in some frequency intervals denoted by stop-bands. The
focus is on stiff isolator designs for low-frequency applications. More precisely, the stop-bands of
the designs considered in this paper are at frequencies smaller than the natural frequencies of
equivalently stiff isolation systems in which the isolators are massless springs. There are basically
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

AMD auxiliary mass damper
BW normalized bandwidth of a stop-band
BWa normalized bandwidth of a single dy-

namic vibration absorber equipped load
BWI normalized bandwidth of a Type I anti-

resonant vibration isolator
BWII normalized bandwidth of a Type II

anti-resonant vibration isolator
DAVI dynamic anti-resonant vibration isola-

tor
DVA dynamic vibration absorber
F forcing vector
HEM hydraulic engine mount
k overall stiffness of an isolation system

from the base to the load
ka absorber spring stiffness in the case of a

dynamic vibration absorber equipped
load

ki stiffness of the ith spring in the 2-
degree-of-freedom optimum band-stop
filter-type isolator

K stiffness matrix
l1 length of the lever in the case of single-

degree-of-freedom lever-type anti-reso-
nant vibration isolators

l2 distance between two pivot points in the
case of single-degree-of-freedom lever-
type anti-resonant vibration isolators

m load mass
ma absorber mass in the case of a dynamic

vibration absorber equipped load
mi ith isolator mass in the 2-degree-of-

freedom optimum band-stop filter-type
isolators

mis total mass of the isolator
M mass matrix
mdof multi-degree-of-freedom
N ratio of natural frequency of the pri-

mary structure to the center frequency
of the stop-band where the primary
structure is modeled as a load with mass
m supported on a base by a spring with
stiffness k without any additional ab-
sorbers or isolators

r normalized excitation frequency
Rbw ratio of normalized bandwidth of a 2-

degree-of-freedom optimum band-stop
filter-type isolator to the bandwidth of
an equivalent Type II anti-resonant
vibration isolator

sdof single-degree-of-freedom
TðoÞ transmissibility
T0 maximum allowable transmissibility in

the stop-band
x displacement of load
xi displacement of the upper end of the ith

isolator spring in the 2-degree-of-free-
dom optimum band-stop filter-type
isolators

X displacement amplitude of load
X displacement vector
y displacement of base
Y displacement amplitude of base
z displacement of the absorber mass in

dynamic vibration absorber equipped
loads or displacement of the isolator
mass in the case of single-degree-of-
freedom lever-type anti-resonant vibra-
tion isolators

a lever ratio in single-degree-of-freedom
lever-type anti-resonant vibration iso-
lators

ai lever ratio of the ith isolator stage in the
2-degree-of-freedom optimum band-
stop filter-type isolators

m ratio of isolator or absorber mass to
load mass

o excitation frequency
oa anti-resonance frequency in the case of

a dynamic vibration absorber equipped
load

oc center frequency of a stop-band
op resonance frequency (pole) of a system

having a single pole
opi ith resonance frequency (pole)
opeak local peak frequency in the transmissi-

bility plot of a 2-degree-of-freedom
optimum band-stop filter-type isolator

os stop-band frequency of a single-degree-
of-freedom mass–spring system
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os1 lower stop-band frequency
os2 higher stop-band frequency
oz anti-resonance frequency (zero) of a

system having a single zero

ozi ith anti-resonance frequency (zero)
o0 natural frequency of a single-degree-of-

freedom mass–spring system with mass
m and stiffness k
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two different kinds of band-stop filter-type vibration isolators. In the first kind, stop-bands are
formed solely by resonance frequencies. In the second kind, stop-bands are formed by anti-
resonance frequencies.
Forming stop-bands only by resonance frequencies is a well-established method [1], and can be

realized by elastic band-gap structures. These are periodic structures that possess stop-bands due
to clever placement of the resonance frequencies. When resonance frequencies are clustered in
certain frequency ranges, then there will be very good attenuation in the frequency ranges where
no resonance frequency is present. Typically, there are multiple repeated unit cells in these
structures. So, there are multiple resonance frequencies prior to the first stop-band, and the stop-
band is placed at a quite high frequency relative to the fundamental frequency of the band-gap
structure. When a band-gap structure is to be used as a vibration isolator, it should support an
object (load) that is to be protected. In that case, the fundamental frequency of the overall system
would be even lower than that of the band-gap structure. Although band-gap structures can be
promising for various applications (see Refs. [2,3] and the references therein), a band-gap
structure cannot be classified as a stiff vibration isolator, unless its mass is much larger than the
mass of the object (load) it supports for isolation. So, these systems will not be considered in this
paper.
On the other hand, anti-resonance frequencies enable placing stop-bands at very low

frequencies without the need of excessive isolator masses. In a linear lumped parameter system,
anti-resonance frequencies can be generated by two different methods. The first method is to add
a Dynamic Vibration Absorber (DVA). The second method is to generate inertial coupling.
DVAs were introduced by Frahm [4] in the beginning of the 20th century. A single-degree-of-

freedom (sdof) DVA basically consists of a mass supported by an undamped spring (similar
systems with damping are called as Auxiliary Mass Dampers (AMDs) and used for reducing
amplification not for isolation [5]). When a DVA is attached to a primary vibrating structure, it is
not attached in the load path. Thus, the stiffness of the system is not changed. By choosing the
stiffness and the mass of a sdof DVA accordingly, one can place an anti-resonance (zero) at any
frequency, but the DVA also adds another resonance frequency (pole) to the system. The zero
forms the stop-band of the system. Since the stop-band is generated by a single anti-resonance
frequency, sdof DVAs can mainly be used for tonal applications unless active means of control
are applied [6].
As mentioned before, there is a second method to generate anti-resonance frequencies in a

system, that is, inertial coupling. Vibration isolators that utilize inertial coupling to generate anti-
resonance frequencies were first developed in the 1960s by researchers in the aerospace industry.
The development of a new kind of vibration isolator was due to strict requirements on stiffness
and mass of the isolators used in the aerospace industry. Flannelly [7] called this new system as
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Dynamic Anti-resonant Vibration Isolator (DAVI). DAVI uses a levered mass–spring
combination to generate an anti-resonance frequency (zero) in the system. Anti-resonance occurs
when the inertial force generated by the levered mass cancels the spring force. This happens at a
particular frequency, which depends on the mass of the isolator, the lever ratio and the spring
stiffness.
Unlike DVAs, DAVIs are implemented on the load path; therefore the dof of the system

is not increased. Furthermore, when a DAVI is introduced to a sdof system, inertial forces
generated by the levered mass increases the effective mass of the system. Thus, the resonance
frequency decreases and the isolator is capable of operating in a lower-frequency range. For
applications in the aerospace industry, please refer to Rita et al. [8], Braun [9,10], Desjardins [11],
Desjardins and Hooper [12]. Moreover, Ivovich and Savovich [13] show an application of
this system for reduction of low frequency excitations transmitted from machines to their
floor supports.
Rivin [14] demonstrates that the rectilinear motion of a primary structure can be transformed

into rotary motion by a flywheel and a ball screw, which can also be used to generate the desired
inertial forces to generate a zero in the system. The rotational analog of the leverage of Flannelly
[7] is the low helix angle of the ball screw.
A couple of years before Flannelly [7], Goodwin [15] also designed an anti-resonant vibration

isolator with the same principle. However, he used hydraulic leverage instead of mechanical
leverage. Fluid-type systems can provide higher leverage than the mechanical ones. Thus, a small
mass of a fluid could generate the desired inertial forces, enabling weight savings on the system.
Later, Halwes [16] also designed a fluid-type anti-resonant vibration isolator with the same basic
principle. Please refer to Braun [9,10], Smith and Redinger [17], and McGuire [18] for more
information.
In the automotive industry, a similar kind of isolator was introduced in the 1980s to replace the

rubber engine mounts that do not offer much control on damping and stiffness. Corcoran and
Ticks [19], and Flower [20] explain the basic principles of Hydraulic Engine Mounts (HEMs).
HEMs having the so-called ‘‘inertia track’’ share the same basic principle with the designs of
Goodwin [15] and Halwes [16].
Whatever kind of leverage an anti-resonant vibration isolator has, the basic operational

principle is the same, and all have a bandwidth limited by a single anti-resonance frequency in
their stop-bands. Consequently, active systems were developed in order to increase bandwidth,
which in turn decreased the isolators’ sensitivity to changes in system parameters due to
temperature variation or time, and also increased the tolerance to input frequency variations.
Please refer to Smith and Redinger [17], McGuire [18], and Smith et al. [21] for more information
on active anti-resonant vibration isolators.
Actually, passive anti-resonant vibration isolators have the potential to be converted into band-

stop filter-type vibration isolators that have multiple anti-resonance frequencies within their stop-
bands. If they are designed properly, they can have larger bandwidth than the sdof isolator
designs especially at low frequencies. This would increase the applicability range of passive
isolators. However, to the authors’ knowledge, this potential of increasing bandwidth at low
frequencies has not been investigated, yet.
In this paper, first of all, bandwidths of DVAs and sdof anti-resonant vibration isolators

will be formulated in a general framework. The purpose is to show the limitations and
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potentials of these designs particularly in the low-frequency range. Then, a 2dof passive vibration
isolator having two anti-resonance frequencies in its stop-band will be designed. The
bandwidth improvement over the previously analyzed isolators will be demonstrated via
numerical examples.
2. Bandwidth formulations

In the literature, DVAs have been analyzed extensively and lever-type anti-resonant
vibration isolators have been analyzed to some extent. However, to the authors’ knowledge,
there is not much work done in terms of formulating bandwidths of these systems in a general
framework.
In this paper, bandwidth formulations for DVA equipped systems and anti-resonant vibration

isolators will be based on three non-dimensional numbers, N, m and T0. T0 is the maximum
transmissibility that is allowable in the stop-band, m is the ratio of absorber or isolator mass to
load mass, and N is the ratio of natural frequency of the primary structure to the center frequency
of the stop-band. The primary structure is modeled as a load supported on a base by a spring
without any additional absorbers or isolators. In all the calculations, the springs are assumed to
be massless, linear and undamped. The masses and the base are assumed to be rigid. The base
excitation motion is harmonic.
The primary structure is a sdof low-pass filter. Hence, given the mass of the load, m, and spring

stiffness, k, the primary structure can satisfy a transmissibility requirement, T0, if the base
excitation frequency is larger than the stop-band frequency, os.

T0 ¼
1

o2
s

�
o2

0 � 1
; where o0 ¼

ffiffiffiffi
k

m

r
) os ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

T0

s
. (1)

However, in most isolation problems, maximum allowable transmissibility is much less than
one, that is, T0 � 1: Hence, os is typically large compared to o0. Most of the times, there is a
minimum stiffness requirement that limits how low can k/m be. So, the stiffness requirement also
limits how low can os be.
In this paper, what is meant by low-frequency isolation is that the center frequency of the

stop-band is to be placed lower than the natural frequency of the primary structure. Hence,
in all the bandwidth formulations N will be greater than one. If N is greater than one, then
stiffness is not compromised to satisfy the transmissibility requirement. In other words, if the
stop-band is to be placed at a particular frequency, then the stiffness of the system can be
made large by choosing N large enough. However, it will be shown that for both DVA
equipped systems and lever-type anti-resonant vibration isolators, bandwidth of the stop-band
decreases as N gets larger than a certain value. Yet, for low N values, dependence is not
straightforward. On the other hand, bandwidth of all these systems decrease as T0 gets smaller.
But, the effect of m to bandwidth is not again straightforward. To see all these dependences
explicitly, bandwidth of DVA equipped systems and anti-resonant vibration isolators will be
first formulated based on the three non-dimensional numbers, N, m and T0, and then these systems
will be compared.
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Load 

Base

ma
2
k

2
k ka

m

y

z

x

Fig. 1. Base-excited load equipped with a sdof DVA: here, y is the displacement of the base, x is the displacement of the

load, z is the displacement of the absorber mass, k is the mount stiffness, m is the mass of the load, ka is the absorber

spring stiffness and ma is the absorber mass.

C. Yilmaz, N. Kikuchi / Journal of Sound and Vibration 291 (2006) 1004–1028 1009
2.1. Dynamic vibration absorbers

Let us analyze the system shown in Fig. 1, which is composed of a DVA equipped load that is
supported on springs.
Here are the equations of motion for the system in the case of base excitation with zero

damping:

m 0

0 ma

" #
€x

€z

� �
þ

k þ ka �ka

�ka ka

" #
x

z

� �
¼

k y

0

� �
. (2)

Assuming harmonic motion with frequency o

x ¼ Xeiot; y ¼ Yeiot; z ¼ Zeiot, (3)

the following relationships are obtained:

X

Y
¼

ðka �mao2Þk

ðk þ ka �mo2Þðka �mao2Þ � k2
a

;
Z

Y
¼

kak

ðk þ ka �mo2Þðka �mao2Þ � k2
a

. (4)

In the literature transmissibility is often defined as the absolute value of the output-to-input
displacement amplitude ratio. This definition enables visually appealing transmissibility versus
excitation frequency graphs. However, in this paper there will be lots of calculations that involve
equating a transmissibility function to a particular value and solving for the frequency that
satisfies that equality. To decrease the number of steps in these calculations, the transmissibility
function is defined without an absolute value sign. However, for the graphs, absolute value of the
transmissibility will be used. So, according to the definition in this paper, T(o) is given by the first
relationship in Eq. (4). To normalize this equation, let us use the following substitutions:

o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=ma

p
; m ¼ ma=m. (5)

Then, TðoÞ is obtained as

TðoÞ ¼
ð1� o2

�
o2

aÞ

ð1� o2
�
o2

aÞð1� o2
�
o2

0Þ � ðo
2
�
o2

0Þm
. (6)
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Let us consider the zero (oz) and the poles (op1, op2) of Eq. (6) in terms of o2.

o2
z ¼ o2

a, (7)

o2
p1;2 ¼

o2
aðmþ 1Þ þ o2

0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

aðm� 1Þ þ o2
0

2

� �2

þ o2
am

s
. (8)

Using Eqs. (7) and (8) one can get the following identity:

o2
p1;2 � o2

z ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
; where a ¼

o2
aðm� 1Þ þ o2

0

2
; b ¼ o2

am. (9)

Let the smaller pole to be indexed as 1. m40, oa40 implies that b40, thus

o2
p1 � o2

z ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
o0; o2

p2 � o2
z ¼ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
40. (10)

Therefore,

o2
p1oo2

zoo2
p2. (11)

Now, let us determine the bandwidth of a DVA equipped system at a given level of
transmissibility, T0, which is a constant. To determine the bandwidth, one should equate the
absolute value of Eq. (6) to the given value of T0 and solve for the two o2 values that will yield the
two stop-band frequencies (o2

s1, o
2
s2). Let the smaller stop-band frequency to be indexed as 1, then

using Eq. (11), one can get

o2
p1oo2

s1oo2
zoo2

s2oo2
p2. (12)

In this paper bandwidth, BW, is defined as the normalized bandwidth of a stop-band.

BW ¼ ðos2 � os1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
os1os2

p
. (13)

Given T0, to determine the bandwidth one should solve for os1, os2. However, to simplify the
calculations let us introduce the following relations:

o2
0 ¼ N2o2

a; o2
s1 ¼ l2o2

a; o2
s2 ¼ u2o2

a. (14)

In low-frequency vibration isolation applications N is greater than one, which implies that the
stop-band is placed at a frequency that is lower than the primary system’s natural frequency
without the absorber. Moreover, Eqs. (7), (12) and (14) imply that u is greater than one and l is
less than one. Then, using the above substitutions in Eq. (6) yields u2 as

u2 ¼ �
ðd � eÞ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � e

2

� �2

þ d

s
; where d ¼ N2ð

1

T0
� 1Þ; e ¼ 1þ m. (15)
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Given N41, let us assume that 0omoN2 and T0 � 1: Then, d � e41. Hence, u2 can be
approximated as follows:

u2 ¼ �
ðd � eÞ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � e

2

� �2

þ d

s
¼ �
ðd � eÞ

2
þ
ðd þ 2� eÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ð4e� 4Þ

ðd þ 2� eÞ2

s !

) u2 ffi �
ðd � eÞ

2
þ
ðd þ 2� eÞ

2
1þ

ð2e� 2Þ

ðd þ 2� eÞ2

� �� �
¼ 1þ

e� 1

ðd þ 2� eÞ
. ð16Þ

So far, the calculations involved frequency squares. Now, assuming positive frequencies, u can
be approximated as follows:

uffi 1þ
e� 1

2ðd þ 2� eÞ
¼ 1þ

m
ð2N2

�
T0Þ � ð2N2 � 2ð1� mÞÞ

. (17)

To find l, one should equate Eq. (6) to –T0. The result can easily be obtained by replacing T0

with –T0 in Eq. (17) provided that N41, 0omoN2 and T0 � 1:

l ffi 1�
m

ð2N2
�

T0Þ þ ð2N2 � 2ð1� mÞÞ
. (18)

N41, 0omoN2 and T0 � 1: imply that uffi 1 and l ffi 1. Thus, Eq. (13) can be used to obtain
the approximate value of bandwidth of a DVA equipped system as

BW a ¼
os2 � os1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

os1os2
p ¼

u� lffiffiffiffi
ul
p ffi u� l ffi

T0m
N2

. (19)

Eq. (19) establishes the dependence of bandwidth to the basic parameters N, m and T0. A more
exact formulation could be obtained by including higher-order terms in the approximations.
However, this has been avoided for the sake of clarity.
100

10

1

0.1

|T
|

0.5 1 2
r

Fig. 2. Transmissibility plots showing the bandwidth of a DVA equipped load for N ¼ 2, m ¼ 0:1:——, DVA equipped

load; – – – –, sdof mass–spring.
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Here is an example system with m ¼ 1, k ¼ 1, ma ¼ 0:1, ka ¼ 0:025. According to these values,
the system without an absorber has o0 ¼ 1, and the absorber introduces a zero at oz ¼ 0:5.
Hence, N ¼ 2 and m ¼ 0:1. Fig. 2 shows the transmissibility plots of the DVA equipped load and
the sdof mass–spring system without the DVA.
Let us calculate the bandwidth at T0 ¼ 0:1. According to Eq. (19), bandwidth is approxi-

mately equal to 0.0025, which is quite a small value. This small bandwidth is barely visible
in Fig. 2.
2.2. Lever-type anti-resonant vibration isolators

As mentioned previously, the basic operational principle of the mechanically or hydraulically
leveraged anti-resonant vibration isolators are the same. However, for the sake of clarity in the
analysis, simple levers will be used to model leverage in anti-resonant vibration isolators.
Depending on the order of the pivot points of the lever with respect to the load and the isolator

mass, there are two different types of anti-resonant vibration isolators. Let us call them as Type I
and Type II isolators. In a Type I isolator, the pivot attached to the base is nearer to the isolator
mass and in a Type II isolator, the pivot attached to the load is nearer to the isolator mass. Let us
first analyze a base-excited Type I isolator, which is depicted in Fig. 3.
Let us assume that the lever rod is massless and rigid; the spring is linear, massless and

undamped. Then, the system is sdof. Moreover, let us assume that the oscillations are small. Then,
linear theory is applicable, generating the equation for z in terms of x and y as

z ¼ ay� ða� 1Þx; where a ¼ l1=l241. (20)

Moreover, the equation of motion is as follows:

ð1þ mða� 1Þ2Þ €xþ o2
0x ¼ ðmaða� 1ÞÞ €yþ o2

0y; where o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; m ¼ mis=m. (21)
k

Load 

l1

l2

y

x

z

mis

m

Fig. 3. Base-excited Type I isolator: here, y is the displacement of the base, x is the displacement of the load, z is the

displacement of the isolator mass, k is the mount stiffness, m is the mass of the load, mis is the isolator mass, l1 is the

length of the lever and l2 is the distance between two pivot points.
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It is important to notice that the effective mass of the system can be much larger than m,
provided that the lever ratio a is large enough. Moreover, the inertial forcing term also increases
with the lever ratio. Thus, with a small mass mis, one can generate large inertia forces provided the
lever ratio is large enough.
The right-hand side of Eq. (21) can be equal to zero when the excitation frequency is equal to

oz ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maða� 1Þ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

misaða� 1Þ

s
. (22)

We can see that oz is independent of m. Moreover, the pole of the system is at

op ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ mða� 1Þ2
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mþmisða� 1Þ2

s
. (23)

Then, TðoÞ is obtained as

TðoÞ ¼
ð1� o2

�
o2

zÞ

ð1� o2
.
o2

pÞ
. (24)

Moreover,

op

oz

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maða� 1Þ

1þ mða� 1Þ2

s
. (25)

It can be seen that if m ¼ 1=ða� 1Þ then op=oz ¼ 1. Hence, pole and zero cancellation occurs,
which imply that TðoÞ is equal to one for all excitation frequencies. Furthermore, given a, if m is
greater than 1=ða� 1Þ, then op4oz and if m is less than 1=ða� 1Þ, then opooz. Therefore, the
order of the pole and the zero depends upon the values of a and m.
Let us assume that op=oza1 and calculate the bandwidth of the stop-band at a given value of

T0. As in the case of the DVA equipped system, let us try to solve for l and u.

o2
0 ¼ N2o2

z ; o2
s1 ¼ l2o2

z ; o2
s2 ¼ u2o2

z . (26)

Eqs. (22) and (26) imply that

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maða� 1Þ

p
) m ¼ N2

�
ðaða� 1ÞÞ. (27)

Eqs. (25) and (27) imply that

op

oz

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2a

ðN2 þ 1Þa�N2

s
. (28)

To determine u, let us substitute Eq. (28) in Eq. (24) and equate it to T0. Then,

u ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðT0=ð1� T0ÞÞ 1=a� 1=N2
� �q . (29)
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By definition, the lever ratio a is greater than one. Moreover, N41 and T0 � 1 imply that u can
be approximated as

uffi 1þ
T0

2ð1� T0Þ

1

N2
�

1

a

� �
. (30)

As before, l can be determined by replacing T0 with –T0 in Eq. (30).

l ffi 1�
T0

2ð1þ T0Þ

1

N2
�

1

a

� �
. (31)

In the bandwidth calculation of the DVA equipped system, u and l represented upper and lower
stop-band frequency ratios. Hence, u was greater than l. However, in this system the order of u

and l depends on the values of a and N. Therefore, the bandwidth calculation will involve an
absolute value sign. Here is the approximate value of the bandwidth of a Type I anti-resonant
vibration isolator:

BW I ¼
u� lffiffiffiffi

ul
p

				
				ffi u� lj j ffi T0

1

N2
�

1

a

				
				. (32)

If a4N2, then opooz and the absolute value sign in Eq. (32) can be removed. Similarly, if
aoN2, then op4oz and the absolute value sign in Eq. (32) can be removed provided that a minus
sign is added in front of the equation.
To formulate bandwidth in terms of m, let us solve for a41 in Eq. (27)

a ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
2

. (33)

Then, N41, m40 and T0 � 1 imply that

BW I ffi T0
1

N2
�

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
							

							. (34)

If mo1=ðN2 � 1Þ, then opooz and the absolute value sign in Eq. (34) can be removed.
Similarly, if m41=ðN2 � 1Þ, then op4oz and the absolute value sign in Eq. (34) can be removed
provided that a minus sign is added in front of the equation.
If m� 1 then Eq. (34) can be simplified as

BW I ffi T0
1

N2
�

ffiffiffi
m
p

N

				
				. (35)

Here is an example with N ¼ 2 and m ¼ 0:1. Fig. 4 shows the transmissibility plots of the Type I
isolator and the sdof mass–spring system without the isolator.
According to Eq. (34), bandwidth at T0 ¼ 0:1 can be calculated as 0.0104. This value is much

larger than the bandwidth of the equivalent DVA equipped system, which was calculated as
0.0025.
Now, let us calculate bandwidth for a Type II anti-resonant vibration isolator, which is

depicted in Fig. 5.
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Fig. 4. Transmissibility plots showing the bandwidth of a Type I isolator for N ¼ 2, m ¼ 0:1:——, Type I isolator;

– – – –, sdof mass–spring.
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l2

y

x

z
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m

Fig. 5. Base-excited Type II isolator: here, y is the displacement of the base, x is the displacement of the load, z is the

displacement of the isolator mass, k is the mount stiffness, m is the mass of the load, mis is the isolator mass, l1 is the

length of the lever and l2 is the distance between two pivot points.
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Here is the equation of motion:

ð1þ ma2Þ €xþ o2
0x ¼ ðmaða� 1ÞÞ €yþ o2

0y; where o0 ¼

ffiffiffiffi
k

m

r
; m ¼

mis

m
; a ¼

l1

l2
. (36)

In a Type II isolator, the effective mass of the system is larger. Hence, the pole of a Type II
isolator is smaller than that of an equivalent Type I isolator.

op ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ma2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mþmisa2

s
, (37)
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oz is the same with an equivalent Type I isolator, which is given in Eq. (22). Moreover,

op

oz

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maða� 1Þ

1þ ma2

s
o1 for a41. (38)

By definition, a is greater than one. Hence, in a Type II isolator op is always less than oz. It can
be seen that by replacing a with (1� a) in Eq. (36) one can obtain Eq. (21). Then, the bandwidth
of a Type II isolator can be obtained by replacing a with (1� a) in Eq. (32)

BW II ffi T0
1

N2
�

1

1� a

				
				 ¼ T0

1

N2
þ

1

a� 1

				
				 ¼ T0

1

N2
þ

1

a� 1

� �
. (39)

Since op is always less than oz, the absolute value sign is removed in the last step of Eq. (39).
However, in order not to violate the approximation steps described by Eqs. (30)–(32), need a42.
This puts an upper bound on the value of m due to Eq. (27), that is, moN2=2. Here is the
formulation of bandwidth in terms of m instead of a provided N41, 0omoN2=2 and T0 � 1

BW II ffi T0
1

N2
þ

2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
0
B@

1
CA. (40)

If m� 1 then Eq. (40) can be further simplified as

BW II ffi T0
1

N2
þ

ffiffiffi
m
p

N

� �
. (41)

Here is an example with N ¼ 2 and m ¼ 0:1. Fig. 6 shows the transmissibility plots of the Type II
isolator and the sdof mass–spring system without the isolator.
According to Eq. (41), bandwidth at T0 ¼ 0:1 can be calculated as 0.0421. This value is much

larger than the bandwidth of the equivalent Type I isolator, which was calculated as 0.0104 or the
bandwidth of the equivalent DVA equipped system, which was calculated as 0.0025.
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Fig. 6. Transmissibility plots showing the bandwidth of a Type II isolator for N ¼ 2, m ¼ 0:1:——, Type II isolator;

– – – – , sdof mass–spring.
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2.3. Bandwidth comparisons

The aim in this section is to compare bandwidth of DVA equipped systems, Type I and Type II
isolators for N41, 0omoN2=2 and T0 � 1:
Let us first compare Type I and Type II isolators according to Eqs. (32) and (39).

BW I ffi T0
1

N2
�

1

a

				
				; BW II ffi T0

1

N2
þ

1

a� 1

� �
.

First of all, both systems have the same dependence on T0. According to Eq. (33), given m and N, a
is the same for both systems. By definition a is larger than one. Actually, if moN2=2, then
according to Eq. (33) a42.
Suppose aXN2, then the absolute value sign in BWI can be removed. Since N 2, a, (a� 1) are all

positive, BWII is larger than BWI. If aoN2, then the absolute value sign in BWI can be removed
by adding a minus sign in front of the equation. Since, (a� 1)oa and N2 is positive, again BWII is
larger than BWI. Therefore, BWII is larger than BWI for all N41, 0omoN2=2 and T0 � 1:
Now, let us show that BWII is larger than BWa for all N41, 0omoN2=2 and T0 � 1: In order

to compare these two systems, their bandwidths should be given in terms of the same variables.
Therefore, one may choose to compare Eqs. (19) and (40). However, it is easier to compare them
by using the variable a. Actually, this variable is defined for lever-type anti-resonant vibration
isolators and physically it is not relevant to DVAs. However, mathematically, given a and N, m
can be calculated using Eq. (27). Then,

m ¼
N2

aða� 1Þ
) BW a ffi T0

m
N2
¼ T0

1

aða� 1Þ
. (42)

Moreover,

a42)
1

aða� 1Þ
o

1

a� 1
)

1

N2
þ

1

a� 1

� �
4

1

aða� 1Þ
) BW II4BW a. (43)
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Fig. 7. Bandwidth versus m comparisons for DVA equipped load (– – – –), Type I isolator ( � � � � � � ) and Type II

isolator (——) for N ¼ 2 and T0 ¼ 0:1.
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Thus, Type II isolator offers the largest bandwidth for any given N41, 0omoN2=2 and
T0 � 1: Let us now see the performance of these systems comparatively on graphs. To do that let
us use Eqs. (19), (34) and (40).

BW a ffi
T0m
N2

; BW I ffi T0
1

N2
�

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
							

							; BW II ffi T0
1

N2
þ

2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
0
B@

1
CA.

It can be seen that all the three systems have the same linear dependence on T0. However, the
dependence on m and N are not straightforward.
Fig. 7 shows the dependence of bandwidth to m, given N ¼ 2 and T0 ¼ 0:1. Notice that BW I ¼

0 when m ¼ 1=ðN2 � 1Þ ¼ 1
3
. Moreover, if mo1

3
then, opooz, and if m41

3
, then op4oz. It can also

be seen in Fig. 7 that as m!0, BWa-0 and BWI, BWII-T0/N
2
¼ 0.025. However, Eq. (33)

implies that, given N, if m! 0, then a!1. Therefore, to reduce the isolator mass in low-
frequency vibration isolation problems, one should be able to use a large lever ratio. This is the
reason why hydraulic leverage is popular in the aerospace industry. Moreover, Fig. 8 shows the
dependence of bandwidth to N, given m ¼ 1

3
and T0 ¼ 0.1.

So far, only systems with single anti-resonance frequencies were considered. In the next section
a 2dof anti-resonant vibration isolator will be synthesized, analyzed and compared with the Type
II isolator, which after all offers the largest bandwidth among the three systems.
3. Design of a wide-band vibration isolator

As mentioned before, both DVA equipped systems and anti-resonant vibration isolators have
single anti-resonance frequency in their stop-bands. A natural way of increasing the bandwidth of
a stop-band is to place additional anti-resonance frequencies. In this section, the aim is to
synthesize an isolator that has two anti-resonance frequencies placed between two resonance
frequencies. This design is the simplest wide-band vibration isolator.
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3.1. Building blocks

Anti-resonant vibration isolators are the perfect building blocks for this design. First of all, it
has been shown in Section 2.3 that Type II anti-resonant vibration isolator offers larger
bandwidth than the other two systems for any given N41, 0omoN2=2 and T0 � 1: Secondly,
Type I anti-resonant vibration isolator offers control over the order of the pole and the zero by
manipulating the values of a and m. The order can be controlled because there is asymmetry in the
inertial forcing terms generated by the levered mass. According to Eq. (21), the normalized values
of the inertial forcing terms are mða� 1Þ2 and maða� 1Þ. So, the former is always smaller than the
latter for any a41 and as it was shown in Section 2.2, the pole-zero order depends whether m or
1=ða� 1Þ is larger. If the inertial forces were equal, then the pole and the zero would be in the
following form:

oz ¼
o0ffiffiffiffi

f i

p ; op ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f i

p )
op

oz

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
f i

1þ f i

s
o1, (44)

where fi is the normalized value of the inertial forcing term. It can be seen in Eq. (44) that the pole
would be always smaller than the zero. Hence, there would be no control over the order of the
pole and the zero.
To obtain the desired pole-zero order in the 2dof system, one can choose a Type I isolator that

has ozIoopI and a Type II isolator, which always has opIoozII such that

opIIoozIIoozIoopI . (45)

There are two different 2dof anti-resonant vibration isolator designs with these building blocks.
In Design I, the lower stage is equipped with a Type I isolator and the upper stage is equipped
Load

y

x1

x2

k1

k2 m2

m1

m

(a) 

Load

y

x1

x2

k1

k2 m2

m1

m

(b) 

Fig. 9. (a) Design I and (b) Design II.
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with a Type II isolator. In Design II, the lower stage is equipped with a Type II isolator and the
upper stage is equipped with a Type I isolator. These two designs are shown in Fig. 9.
Let us first analyze Design I. Here are the equations of motion:

M €Xþ KX ¼ F; where

M ¼
m1ða1 � 1Þ2 þm2ða2 � 1Þ2 �m2a2ða2 � 1Þ

�m2a2ða2 � 1Þ mþm2a22

" #
; X ¼

x1

x2

" #
;

K ¼
k1 þ k2 �k2

�k2 k2

" #
; F ¼

k1yþm1a1ða1 � 1Þ €y

0

� �
;

(46)

where y is the displacement of the base, xi is the displacement of the ith stage, mi is the mass of the
ith isolator, m is the mass of the load, ai is the lever ratio of the ith isolator stage, and ki is the
spring stiffness of the ith stage. It can be seen in Fig. 9(a) that the load is in the upper (2nd) stage
and the plate combining the upper and lower (1st) stages is assumed to be massless.
First of all, let us identify the building blocks. In this design, k1, m1, a1 are selected such that

Type I isolator has ozIoopI . Similarly, k2, m2, a2 are selected such that Type II isolator has
opIIoozII . However, the effective loads in these two sub-systems are not equal. For the upper
stage, the effective load is just m. But, for the lower stage, the effective load is m+m2.
To see the Type II isolator independently, let k1!1. Then, the lower stage behaves as if it is

rigidly attached to the base. Hence, the system becomes a sdof system, which is composed of the
upper stage only. Similarly, to see the Type I isolator independently, let k2!1. Then, the upper
stage behaves as if it is rigidly attached to the load. Hence, the system becomes a sdof system,
which is composed of the lower stage only. Fig. 10 illustrates the two building blocks.
m

y

x2

k2 m2

(a) 

m+m2 

y

x1

k1 m1

(b) 

Fig. 10. (a) Type II isolator as one of the building blocks and (b) Type I isolator as the second building block.
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The load is in the upper stage. Hence, to calculate the poles and zeros of the 2dof system
represented by Eq. (46), transmissibility should be determined for the upper stage. Here is the
transmissibility:

TðoÞ ¼
k1 � o2m1a1ða1 � 1Þ
� �

k2 � o2m2a2ða2 � 1Þ
� �

k1 þ k2 � o2M11ð Þ k2 � o2M22ð Þ � k2 � o2m2a2ða2 � 1Þð Þ
2
,

where M11 ¼ m1ða1 � 1Þ2 þm2ða2 � 1Þ2; M22 ¼ mþm2a22. ð47Þ

Now, let us compare the poles and zeros of this 2dof system with the two sdof building blocks.
By comparing the numerator of Eq. (47) with Eq. (22), one can see that the zeros are of the same
form with sdof isolators. Hence, the zero values do not change due to coupling of the two
isolators. However, when these two sdof systems are combined into a 2dof system, the pole values
change. This can be seen by equating the denominator of Eq. (47) to zero and solving for the poles
and then comparing the result by Eqs. (23) and (37).
Let us name the poles and zeros of the 2dof system as op1, op2, oz1, oz2. It has been shown that

the two zeros of the 2dof system is equal to the zeros of the building blocks. Let us label the zeros
of the 2dof system as follows:

oz1 ¼ ozI ; oz2 ¼ ozII . (48)

Moreover, let the smaller pole of the 2dof system be called as op2. Now, let us compare op2 and
opII . opII is the pole of the system represented by Fig. 10(a). op2 is the fundamental frequency of
the 2dof system, which has a mode shape such that the both springs are either in tension or in
compression. The added compliance from the lower stage decreases the force on the upper stage,
which implies that op2oopII .
Secondly, let us compare op1 and opI . opI is the pole of the system represented by Fig. 10(b).

op1 is the higher value pole of the 2dof system, which has a mode shape such that the springs are
working antagonistically, that is, one is in tension while the other is in compression. This increases
the force on the lower stage, which implies that op14opI . Therefore, the order of the poles and
zeros of the two building blocks and the 2dof system is as follows:

op2oopIIoozII ¼ oz2oozI ¼ oz1oopIoop1. (49)

One can deduce from Eq. (49) that the 2dof system has the desired order of the poles and zeros:

op2ooz2ooz1oop1. (50)

Furthermore, coupling of the two building blocks, yielded a larger bandwidth compared to a
system that has poles and zeros described by Eq. (45) since poles are further separated from the
zeros.
After all, the aim is to obtain a system that obeys Eq. (50). To satisfy the initial assumption of

ozIoopI , m1 should be larger than a certain value. However, in the combined system the pole
value will increase, since op14opI . Therefore, the initial assumption ozIoopI can be omitted
provided Eq. (50) is still satisfied. This relaxation enables obtaining 2dof designs that satisfy Eq.
(50) with smaller isolator masses.
Now, let us consider Design II. One can obtain the equations of motion for the second design

by replacing ai by ð1� aiÞ in Eq. (46). It can be shown by a similar argument that this system also
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satisfies Eqs. (49) and (50). However, in this design, Type II isolator is placed in the lower
stage. The effective load on this stage is m+m2, which is more than m. Hence, placing the
Type II isolator in the lower stage instead of in the upper stage decreases its effective m because of
the extra load. According to Eq. (40), as m decreases, the bandwidth of the Type II isolator
decreases.
Similarly, placing the Type I isolator in the lower stage instead of in the upper stage decreases

its effective m. For a Type I isolator that has ozIoopI , Eq. (34) can be rewritten as

BW I ffi T0
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q �
1

N2

0
B@

1
CA provided N41; m4

1

N2 � 1
and T0 � 1. (51)

Hence as m decreases, the bandwidth of the Type I isolator also decreases. To compare the effect
of decrease in m to the decrease in bandwidth of Type I and Type II isolators, let us differentiate
Eqs. (51) and (40) with respect to m

@BW I

@m
ffi

4N2T0

m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
 �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
 �2 , (52)

@BW II

@m
ffi

4N2T0

m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
 �
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N2

�
m

� �q
 �2 . (53)

It can be seen that given N41 such that 1=ðN2 � 1ÞomoN2=2 and given T0 � 1; Eq. (53) is
larger than Eq. (52). Hence, bandwidth of Type II isolator is affected more due to a decrease in m.
This can also be seen by observing the slopes of the curves in Fig. 7 in Section 2.3 for the region
where m41=ðN2 � 1Þ. Thus, to obtain larger bandwidth in the 2dof system, Type II isolator
should be placed in the upper stage. Therefore, Design I is preferred over Design II.
3.2. The optimization problem

In both sdof DVA equipped systems and sdof anti-resonant vibration isolators, given the
mount stiffness k and the load mass m as parameters, there are two variables that should be
determined in order to satisfy the requirements dictated by N, m. The two variables are ka and ma

for the case of a DVA equipped system and a and mis for the case of sdof anti-resonant vibration
isolators. m determines the value of ma or mis, and N determines the value of ka or a. Then, given
T0, there is a single value for the bandwidth. However, in Design I, there are more variables than
the number of constraints. Therefore, there is the opportunity of maximizing bandwidth through
optimization.
Before stating the optimization problem, let us make some definitions. Given TðoÞ by Eq. (47)

and given the maximum allowable transmissibility in the stop-band as T0, os1 and os2 are the two
solutions of TðoÞ ¼ �T0. Since there are two zeros in the stop-band, there is a frequency between
the two zeros at which transmissibility attains a local maximum. Let us call this frequency as
opeak. Moreover, all the frequencies are taken to be positive. Then, here is the statement of the
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optimization problem

maximize BW ¼ os2�os1ffiffiffiffiffiffiffiffiffiffi
os1os2
p

subject to h1 : TðopeakÞ ¼ T0;

h2 : m1þm2

m
¼ m;

h3 : k1k2

k1þk2
¼ k;

h4 :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
os1os2
p

¼ oc ¼ o0=N; where o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
;

k1 � k; k2 � k; m1 � 0; m2 � 0; a1 � 1; a2 � 1:

There are six variables in this problem, which are k1, k2, m1, m2, a1 and a2. As before, the mount
stiffness k and the load mass m are the parameters that scale the band center frequency oc. To
normalize the problem, k and m can be taken as one. Moreover, N, m and T0 are the parameters
with the same definitions stated in Section 2.
There are six variables and four equality constraints. Let us call the variables k2, m2, a1 and a2

as state variables that satisfy the four equality constraints. The remaining two variables, k1 and
m1, are called the decision variables.
The state variables m2 and k2 can easily be solved in terms of the decision variables using

equality constraints h2 and h3, respectively. Although, os1, os2, opeak and TðopeakÞ can be
determined analytically, it is not feasible to solve for a1 and a2 analytically using the equality
constraints h1 and h4. However, a1 and a2 can easily be determined via Newton’s Method using
the equality constraints h1 and h4. To determine the values of the decision variables that maximize
bandwidth, any gradient-based algorithm can be used. In this paper, Newton’s Method with
variable step length is used in order not to violate the set constraints.
Given N, m and T0, to check whether the local maximum obtained through the optimization

routine is actually a global maximum, different initial conditions are used. It has been observed
that all the initial conditions gave the same output. Moreover, genetic algorithm is also used for
various values of N, m and T0. Both methods converged to the same results. Therefore, it is highly
probable that the search space has a single maximum for any reasonable value of N, m and T0.
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Fig. 11. Bandwidth comparison of a Type II isolator (– – – –) and the 2dof optimum design (——) for N ¼ 2, m ¼ 0:1
and T0 ¼ 0:1.
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3.3. Numerical results

Let us compare the designs obtained through the optimization routine with the equivalent Type
II isolators, which after all offer the largest bandwidth among the three isolation systems having
single anti-resonance frequencies. In all the comparisons, let k ¼ 1 and m ¼ 1.
Let us first choose N ¼ 2, m ¼ 0:1 and T0 ¼ 0:1. For the Type II isolator m ¼ 0:1,

m ¼ 1)mis ¼ 0:1. Moreover, m ¼ 0:1, N ¼ 2) a ¼ 6:844. For the 2dof optimum design, here
are the values of the variables: m1 ¼ 0:03384, m2 ¼ 0:06616, k1 ¼ 2:697, k2 ¼ 1:589, a1 ¼ 17:65,
a2 ¼ 10:60. Fig. 11 shows the transmissibility plots of the two systems.
By using Eq. (39) or (40) bandwidth of the Type II isolator can be found as 0.0421. Moreover,

bandwidth of the optimum design is calculated as 0.0945. Let Rbw be the ratio of bandwidth of the
optimum design to the bandwidth of the Type II isolator. Then, Rbw ¼ 2:24. Hence, the optimum
design has more than twice the bandwidth of the Type II isolator.
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Fig. 12. Bandwidth comparison of a DVA equipped load (– – – –) and the 2dof optimum design (——) for N ¼ 2,

m ¼ 0:1 and T0 ¼ 0:1.
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Fig. 13. Bandwidth comparison of a Type II isolator (– – – –) and the 2dof optimum design (——) for N ¼ 2, m ¼ 0:5
and T0 ¼ 0:1.
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Fig. 14. Bandwidth comparison of a Type II isolator (– – – –) and the 2dof optimum design (——) for N ¼ 4, m ¼ 0:1
and T0 ¼ 0:1.
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Fig. 15. Bandwidth comparison of a Type II isolator (– – – –) and the 2dof optimum design (——) for N ¼ 2, m ¼ 0:1
and T0 ¼ 0:01.
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As shown earlier, a DVA equipped system would have much smaller bandwidth than an
equivalent Type II isolator. Since DVA equipped systems are extensively used in industry, let us
compare it with the optimum design in order to see the bandwidth improvement. Again let N ¼ 2,
m ¼ 0:1 and T0 ¼ 0:1. Fig. 12 shows the transmissibility plots of the 2dof optimum design and an
equivalent DVA equipped system.
As calculated earlier for the given parameters, the bandwidth of the optimum design is 0.0945,

and the bandwidth of the DVA equipped system is 0.0025. So, the bandwidth ratio of these
systems is almost 40, which is quite a large number.
In the following three comparisons, N, m and T0, will be changed one at a time. Hence, their

individual effects will be seen. First, let us only change m. Let, N ¼ 2, m ¼ 0:5 and T0 ¼ 0:1. Then,
for the Type II isolator mis ¼ 0:5 and a ¼ 3:372. For the 2dof optimum design, here are the
values of the variables: m1 ¼ 0:09698, m2 ¼ 0:4030, k1 ¼ 1:752, k2 ¼ 2:329, a1 ¼ 8:416,
a2 ¼ 5:631. Fig. 13 shows the transmissibility plots of the two systems.
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Fig. 16. Graph representing Rbw versus m for N ¼ 2 and T0 ¼ 0:1.
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Fig. 17. Graph representing Rbw versus N for m ¼ 0:1 and T0 ¼ 0:1.

C. Yilmaz, N. Kikuchi / Journal of Sound and Vibration 291 (2006) 1004–10281026
Bandwidth of the Type II isolator is 0.0672. Moreover, bandwidth of the optimum design is
0.180. Therefore, Rbw ¼ 2:68. So, in this case, the optimum design has almost three times the
bandwidth of the Type II isolator.
Now, let us only change N. Let, N ¼ 4, m ¼ 0:1 and T0 ¼ 0:1. Then, for the Type II isolator

mis ¼ 0:1 and a ¼ 13:16. For the 2dof optimum design, here are the values of the variables:
m1 ¼ 0:02349, m2 ¼ 0:07651, k1 ¼ 1:814, k2 ¼ 2:229, a1 ¼ 35:06, a2 ¼ 22:38. Fig. 14 shows the
transmissibility plots of the two systems.
Bandwidth of the Type II isolator is 0.0145. Moreover, bandwidth of the optimum design is

0.0411. Therefore, Rbw ¼ 2:84. Thus, in this case, the optimum design has almost three times the
bandwidth of the Type II isolator.
Finally, let us only change T0. Let N ¼ 2, m ¼ 0:1 and T0 ¼ 0:01. Then, for the Type II isolator

mis ¼ 0:1 and a ¼ 6:844. For the 2dof optimum design, here are the values of the variables:
m1 ¼ 0:01838, m2 ¼ 0:08162, k1 ¼ 1:575, k2 ¼ 2:740, a1 ¼ 18:83, a2 ¼ 12:20. Fig. 15 shows the
transmissibility plots of the two systems.
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Fig. 18. Graph representing Rbw versus T0 for m ¼ 0:1 and N ¼ 2.

C. Yilmaz, N. Kikuchi / Journal of Sound and Vibration 291 (2006) 1004–1028 1027
Bandwidth of the Type II isolator is 0.00421. Moreover, bandwidth of the optimum design is
0.0272. Therefore, Rbw ¼ 6:84. Hence, in this case, the optimum design has almost seven times the
bandwidth of the Type II isolator.
The two systems can be compared for other values of N, m and T0. Figs. 16–18 show the effect

of each parameter on Rbw. In each graph, only one parameter is changed at a time.
It can be inferred from these comparisons that Rbw increases as T0 decreases or N increases.

But, Rbw decreases as m decreases. However, in all cases Rbw41. Hence, the 2dof design has larger
bandwidth than the equivalent Type II isolator for the large range of parameters covered by Figs.
16–18.
It should be noted that all the isolation systems considered in this paper are undamped. In the

presence of damping, bandwidth of all these systems would be smaller. So, in order to retain
bandwidth, damping should be kept as small as possible. However, due to damping, wide anti-
resonance notches would be affected less when compared to narrow notches. Therefore,
bandwidth of Type II isolators and 2dof optimum designs would decrease less when compared to
DVA equipped systems. A detailed analysis that includes damping can be the object of future
research.
4. Conclusion

In this paper, bandwidths of sdof DVA equipped systems and lever-type anti-resonant
vibration isolators are formulated using three non-dimensional numbers. The order of the pivot
points plays an important role in the dynamics of lever-type anti-resonant vibration isolators. So,
according to the order of their pivot points they are categorized as Type I and Type II anti-
resonant vibration isolators. Based on the bandwidth formulations, which are derived for low-
frequency applications, Type II anti-resonant vibration isolators offer the largest bandwidth
among the three analyzed systems having single anti-resonance frequencies. Moreover, it has been
shown that Type I anti-resonant vibration isolators offer control over the pole-zero order due to
asymmetry in the inertial forcing terms generated by the levered masses. Then, a 2dof vibration
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isolator is synthesized by stacking a Type I and a Type II isolator in series such that their stacking
order yielded the maximum bandwidth in the optimization routine. Finally, the bandwidth
improvement over the Type II isolator is demonstrated via parametric studies. To sum up, the
2dof system synthesized in this paper increased the applicability range of passive vibration
isolation systems in the low-frequency range.
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